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New Summation Expressions Involving the
Gamma Function
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It is shown how, using standard perturbation theory, one can obtain new summation
expressions involving the gamma function.

1. INTRODUCTION

Using standard perturbation theory, if the exact energy of a system is
known, one can compare this exact expression and the perturbation expansion
for this energy in powers of some small parameter. Equating equal powers
of this small parameter sometimes leads, in a conceptually direct way, to
new summation expressions.

2. THEORY

In standard perturbation theory [1], it is shown that given the three-
dimensional system

H= Hy + h(r) (1)
1d*> [+

=" + Vi 2

Ho= =T o2 ) @

where V(r) is a central potential and /(r) a small central perturbation, then
Han/(r) = E,,/IP,,/(r) 3)
HoRu(r) = E\' Ru(r) = EW

nl) 4)
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and one can write

©

E.=EY + (nl‘h(r)‘nb + Z llh)n’ I’ L nd) + -

EW — EV)

(%)

which is a converging series for appropriate /A(r)’s. Here (nl‘h(r)n’l) =
S8 Ru(r)h(r) Ry (r)r* dr, ete.

With a little ingenuity, such well-known expressions can be made to
yield new mathematical results. A case in point where new infinite sums are
obtained is illustrated in what follows.

The simplest new result is

1 2 +B+1) 1
B &untTns+PB+ 1) —n

B #0 (6)

where n> (n<) is the bigger (smaller) of n, n’. What makes this an interesting
(new) summation rule are the (n’ — n) factor, and the fact that it involves
two parameters (n, B). If B is an integer, Eq. (6) reduces to
1 2 n>!(ne + B)' 1

B B nZn n<!(n> + B)' (n, - I’l)

(7)

If n = 0, this reduces to the standard one-parameter expression [2, p. 11]

1 e k!
(n —2)(n — 1)! k;(n+k—l)!

(®)

and in the trivial special case B = 1, n = 0 (where the expression can be
easily checked) one obtains

© ©

n'l

nZ::1 (n" + Dn’ nZ:] (n"+ D &= \n o+ 1

3. DERIVATION

Consider the case when, in Eq. (2), V(r) = %rz, i.e., one has a three-
dimensional harmonic oscillator system. Then [3],

(2L +1+3) " rle ™2 . 3,
R,,/(r)—{ n! } F(l-i—%—)lFl n,l+2,r (9)

Here n =0,1,2,...,1=20,1, 2, ..., and the confluent hypergeometric
function [2, p. 1045]
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" T(=n+ ml(d + 3™
1 F _n;l"‘i;rz = : &) (3 =) (10)
2 m=0 F(_n)r(l + i + m)m'
is an n + 1-term polynomial in r?.
For this V(r), the unperturbed energy in Eq. (4) is
ED=2n+1+3 (11)

The bit of ingenuity required here is to use for the central perturbation in
Eq. (1)

a
hr) =7-> 12
(N =77 (12)
Then
2
H:_ld_z_,_imz-i'@_,_lrz (13)
2 dr 2r 2
can be written as
2 1oy
Hz—ld—2+—(_mtl +1, (14)
2 dr 2r 2
where
a o’ 20
I'=1+ — - + o 15
2041 QI+ 1) @+ 1) (15)
Thus, for this /(r), the exact energy in Egs. (3), (5) is known, namely
Ei=2n+1+3 (16)
and one has
o — by 3 3\ _,
E,— Ew =2n+1 +2— 2n+l+2 =0 -1
2 3
_ (13+ 20L5+m
20+1  (21+1) 21+ 1)
1 1
ol =5 x| = |ty
= agnl] = oy + 2 2 L )
2}"2 n;n 2(7’! - n’)



3142 Mavrom atis

One can then equate equal powers of o to obtain

211? = <n1\ \n1> (18)
{ w (nl‘ ‘nl}
YR 2(n — n) (19)

To evaluate Eqgs. (18), (19) one can use the general expression [4]
Inn'l()\') =

[_Lwti+d 7 Lé+1+300 —%)
[n!n’!r(n’+l+%):| Cu+3HI(%)

X3 F; —n,L-i-H-;,L-i-1;l+§,—n’+L+l;l (n'=n)
2 2°2 2 2
(20)
where the generalized hypergeometric function 3 F» is an (n + 1)-term polyno-
mial [2, p. 1045] namely
F( n +p)r(7+l+ +p)I“(7+ 1 + p)
I+ DI(=n +%+ 1)
Td+3+pl(=n" +5+ 1+ p)p!
One notes that if any of the terms —n, A/2 + [ + 3/2, M2 + 1 is zero, the
3F> in Eq. (20) is equal to 1.
The integral expression (20) (with n = n’, A = —2) confirms the validity
of Eq. (18) since
11TU+ DI+ 1) 1 3
- Fol—n Il +=,0,1+=, —n;1
2n Ta+Hray 727" 72 2 "

1)

(nl‘ ‘nl} =

_1_1

2(+%)
where one has used ['(B + 1) = BI'(B), and ['(m + 1) = m! if m is an
integer. This result was recently discussed in an interesting paper [5], where
it is obtained using the Hellman—Feynman theorem. Here this result is shown

to also follow from Eq. (18) (i.e. equating the linear powers of o) or from
Eq. (20) (with n = n’, and A = —2).
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Equation (19) gives the simplest new summation expression. Using Eq.
(20) again (this time for n # n'), one obtains

I | =L T +1+2) 17TU+HT0 + 1)
Wl 52 nh =75 [n!n’!r(n’ +1 +;)] T+ HI()

X 3F2(—n,l+l,0;l+§, —n'; 1)

2 2
N R R ,

2 (n!F(n’ T+ arn WeEm 22

Hence
1 1 o n!llne +1+3) 1

QI+ 1)} - EnZn ndl(ns +1+3) (1 +3)n" —n) (23)

where n> (n<) is the bigger (smaller) of n, n'. This is just the result of Eq.
(6) if we substitute p = / + .

By comparing the next power of alpha (o) in Eq. (17) one obtains a
more complicated new double sum expression. For the special case n = 0
this reduces to

s —A (g l)_ Ll B#0 24
;0F(k+ﬁ+2) mz::]m BzF(B+1) ) (24)

This new result can be added to the known series of the form [6]
N(k)
Z (43 Z bm

If B is an integer, Eq. (24) reduces to
: K S1l\_11
2 (k+ B + 1) (Zl m) - B! 25

4. CONCLUSIONS

We have used a pedagogically instructive, term-by-term, comparison
between the exact expressions for the energy of a particular system and the
perturbation expansion for this energy in powers of a parameter, to obtain
new summation expressions involving the gamma function. These results
reduce to standard expressions in the appropriate limits.
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